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• Part 1: Old-School Consensus
(i.e., Permissioned Blockchains)

• Part 2: Nakamoto Consensus
(i.e., Permissionless Blockchains with slow finality)

• Part 3: Algorand Consensus
(i.e., Permissionless Blockchains with fast finality)



Informal definition of blockchain

A blockchain is a decentralized computer publicly running 
programs (smart contracts) on inputs received through 
transactions. The state of this computer is uniquely 
defined by the sequence of transactions executed from 
the genesis.



Where is the blockchain stored?

The only requirement is that it is jointly maintained by 
several (pretty much mutually distrustful) computers.

For simplicity, we will assume that "jointly maintained" 
means that multiple computers store a fully copy of the 
blockchain (i.e., the entire sequence of transactions). This 
is true in several cases (e.g., full nodes in Bitcoin) but it is 
not always necessarily true.



Major problem towards designing a blockchain:

How do we make sure that all computers 
maintaining a blockchain have a common view of its 
state?



Major problem towards designing a blockchain:

How do we make sure that all computers
maintaining a blockchain have a common view of its
state?

...even in the presence of faults (i.e., crashes, omissions, byzantine behavior)...
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Consensus Layer

Scalability Layer

Application Layer

Blockchain: a possible view in multiple layers



Some generals are attacking a fortress 

and must decide as a group only 

whether to attack or retreat. Some 

generals may prefer to attack, while 
others may prefer to retreat. The 

important thing is that all generals 

agree on a common decision.
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[LSP 82]:
Byzantine 
Agreement
/Broadcast 
(Generals)
problem



[LSP 82]:
Byzantine 
Agreement
/Broadcast 
(Generals)
problem

Some generals are attacking a fortress 

and must decide as a group only 
whether to attack or retreat. Some 

generals may prefer to attack, while 

others may prefer to retreat. The 
important thing is that all generals 

agree on a common decision.

Subtlety: if there is only one source then it’s a 

specific (simpler) case called broadcast and 

it’s the actual Byzantine Generals problem. 

With multiple generals we have the 

Byzantine Agreement problem.
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Cryptography
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Several cryptographic tools have been proposed to design 

blockchains with improved features. We will recall some of such useful 

tools just before using them.

We start with digital signatures.

Ittai Abraham, Oct 23, 2021 (twitter, [Abr21]):
"Cryptography is eating the world"
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Several cryptographic tools have been proposed to design 

blockchains with improved features. We will recall some of such useful 

tools just before using them.

We start with digital signatures.

Ittai Abraham, Oct 23, 2021 (twitter, [Abr21]):
"Cryptography is eating the world"



Digital signatures 
schemes

(sk, pk) = KeyGen(keylength)

s = Sign(sk, m)

(can be deterministic)

0/1 = Ver(pk, m, s)



Properties of a 
signature scheme

Ver(pk, m, Sign(sk, m)) == 1

No adversary can produce an 
accepting signature of a new 
(i.e., not already signed by the 
owner of sk) message

Signature schemes achieve non-
repudiability



PKI and 
"Authenticated" 

functionalities

A public-key infrastructure 
guarantees in the eyes of all honest 
players, that a given public key 
belongs to some specific entity.

This is beneficial in protocol design 
since an adversary that generates 
two inconsistent messages can be 
detected and slashed.

Functionalities achieved through 
protocols that explore this feature 
are sometimes called 
“authenticated”.
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Realizing SMR requires to solve the consensus problem, namely:

Consistency: honest nodes must have the same view of the state of the machine

Liveness: every valid transaction will be executed updating the state of the machine

State Machine Replication [Lam78,Sch90] (Ledger Consensus)

One server (a machine) is split into multiple servers all sharing the same state 

(i.e., realizing the same machine) to prevent faults, even byzantine faults (i.e., 

corruption), therefore leaning to distributed (and even decentralized) systems.

It corresponds to what is nowadays known as permissioned blockchain where the 

number and the identities of nodes maintaining the blockchain is known up front.
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corruption), therefore leaning to distributed (and even decentralized) systems.

It corresponds to what is nowadays known as permissioned blockchain where the 

number and the identities of nodes maintaining the blockchain is known up front.
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With a synchronous network without adversaries the problem is trivial: just with 

rotating leaders each announcing a block of transactions when leading, you 

get a permissioned blockchain (consistency and liveness are trivially satisfied)

Permissioned blockchain assumes

known governance (i.e., nodes that maintain the full list of transactions)

In a synchronous network the is a global clock and all nodes are aligned to it. 

Everyone can expect what other are doing at a given timestep, and a message 

sent during timestamp t is delivered by timestamp t+1.

This is clearly excessive in real-world scenarios, particularly when breaking 

synchronously (e.g., through a DDOS attack) can have a devastating impact.
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In the synchronous model, without adversaries, solving the consensus problem 

is trivial: just with rotating leaders each announcing a block of transactions 

when leading, you get a permissioned blockchain (consistency and liveness 

are trivially satisfied).

Permissioned blockchain assumes

known governance (i.e., nodes that maintain the full list of transactions)

In a synchronous network the is a global clock and all nodes are aligned to it. 
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In the synchronous model, without adversaries, solving the consensus problem 

is trivial: just with rotating leaders each announcing a block of transactions 

when leading, you get a permissioned blockchain (consistency and liveness 

are trivially satisfied).

Permissioned blockchain assumes

known governance (i.e., nodes that maintain the full list of transactions)

In the synchronous model there is a global clock and all nodes are aligned to it. 

Everyone can expect what others are doing at a given timestep, and a 

message sent during timestamp t is delivered by timestamp t+1.

This might be excessive in some real-world scenarios, particularly when 

breaking synchrony (e.g., through a DDOS attack) can have a devastating 

impact.
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In the synchronous model, without adversaries, solving the consensus problem is trivial: just with

rotating leaders each announcing a block of transactions when leading, you get a permissioned block

chain (consistency and liveness are trivially satisfied).

From Byzantine Broadcast to SMR / Ledger Consensus
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rotating leaders each announcing a block of transactions when leading, you get a permissioned block
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If a byzantine broadcast (BB) protocol is used by the leader, then we get a 
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BB: validity (sender is honest with input m, honest nodes get msg=m) => liveness

From Byzantine Broadcast to SMR / Ledger Consensus
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In the synchronous model, without adversaries, solving the consensus problem is trivial: just with

rotating leaders each announcing a block of transactions when leading, you get a permissioned block

chain (consistency and liveness are trivially satisfied).

If a byzantine broadcast (BB) protocol is used by the leader, then we get a 

permissioned blockchain in the presence of byzantine adversaries:

BB: agreement (honest nodes get same msg) => consistency

BB: validity (sender is honest with input m, honest nodes get msg=m) => liveness
(we omit the (obvious) termination condition, for simplicity)

[DS83] gives a simple BB protocol (with sync+permissioned+PKI) 

for any number of faulty nodes (but for useful SMR honesty should be majority)​.

PKI is crucial to tolerate that faulty nodes are more than 1/3 of the total[PSL80]

From Byzantine Broadcast to SMR / Ledger Consensus
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In the synchronous model, without adversaries, solving the consensus problem is trivial: just with

rotating leaders each announcing a block of transactions when leading, you get a permissioned block

chain (consistency and liveness are trivially satisfied).

If a byzantine broadcast (BB) protocol is used by the leader, then we get a 

permissioned blockchain in the presence of byzantine adversaries:
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(we omit the (obvious) termination condition, for simplicity)

[DS83] gives a simple BB protocol (with sync+permissioned+PKI) 

for any number of faulty nodes (but for useful SMR honesty should be majority)​.

PKI is crucial to tolerate that faulty nodes are more than 1/3 of the total [PSL80]

From Byzantine Broadcast to SMR / Ledger Consensus



Recap
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SMR / Ledger Consensus: (n rotating nodes proposing state updates)

Goal: Consistency + Liveness

Byzantine Broadcast: (one node sending a message to all others)

Goal: Agreement + Validity

Rotating Leaders + BB [DS83] + sync model + permissioned + PKI

==> SMR with honest majority (without PKI then super majority is 

required)
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We have seen that in the synchronous model we can construct efficient 

protocols, but the model might not correspond sufficiently well to reality.

Relaxing the Synchronous Model
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(Fully) asynchronous model: there is no upperbound on the time needed for a 

sent message to reach the receiver (but messages eventually are received). 

PROs: great applicability to concrete scenarios;

CONs: very hard setting affected by negative results (e.g., [FLP85]: 

impossibility of deterministic byzantine agreement even with just one crashing 

node, due to the difficulty of distinguishing a crash from a delayed message).

Relaxing the Synchronous Model

We have seen that in the synchronous model we can construct efficient 

protocols, but the model might not correspond sufficiently well to reality.
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(Fully) asynchronous model: there is no upperbound on the time needed for a 

sent message to reach the receiver (but messages eventually are received). 

PROs: great applicability to concrete scenarios; 

CONs: very hard setting affected by negative results (e.g., [FLP85]: 

impossibility of deterministic byzantine agreement even with just one crashing 

node, due to the difficulty of distinguishing a crash from a delayed message).

Fortunately, we can get the best of both worlds: the partially synchronous 

model [DLS88].

Relaxing the Synchronous Model

We have seen that in the synchronous model we can construct efficient 

protocols, but the model might not correspond sufficiently well to reality.
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Main idea: we assume to be in general the synchronous model but knowing 

that sometimes for a time window of unknown length, the synchronous 

model can fail., still we want to make sure that some properties (i.e., 

consistency or liveness) are preserved.

Summing up, we want to guarantee:

• while good sync, consistency + liveness

• while poor sync, consistency

Note: Nakamoto showed the power of targeting liveness instead of consistency 

when things go wrong (i.e., in the presence of forks).

The Partially Synchronous Model
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Summing up, we want:

• while good sync, consistency + liveness

• while poor sync, consistency

The above goal can be achieved if and only if corruption is under the 1/3 

threshold [DLS88].

"only if": the point is that with t corrupted nodes, the honest node can not wait 

for more than n-t messages, but t of those n-t messages could come from the 

adversary. So, when t>=n/3 we have that the messages from honest parties 

out of those n-t messages are not majority. PKI does not avoid this bound.

The Partially Synchronous Model
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Summing up, we want:

• while good sync, consistency + liveness

• while poor sync, consistency

The above goal can be achieved if and only if corruption is under the 1/3 

threshold [DLS88].

There exists many protocols achieving this bound and often they are grouped 

in the alias "BFT protocol". Recall: so far, we have considered the 

permissioned setting.

The Partially Synchronous Model



Permissioned Blockchain

some known organizations decide the state 
of the computer

- no waste of energy
- strong consistency
- fast transactions if network not under attack
- honest majority (usually super majority) is required
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(i.e., Permissionless Blockchains with slow finality)

• Part 3: Algorand Consensus
(i.e., Permissionless Blockchains with fast finality)
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From Permissioned to Permissionless: is it possible at all?

(recall) Permissioned blockchain assumes

known governance (i.e., nodes that maintain the full list of transactions)
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From Permissioned to Permissionless: is it possible at all?

In the synchronous model, without adversaries, solving the consensus problem 

is trivial: just with rotating leaders each announcing a block of transactions 

when leading, you get a permissioned blockchain (consistency and liveness 

are trivially satisfied).

(recall) Permissioned blockchain assumes

known governance (i.e., nodes that maintain the full list of transactions)
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From Permissioned to Permissionless: is it possible at all?

In the synchronous model, without adversaries, solving the consensus problem 

is trivial: just with rotating leaders each announcing a block of transactions 

when leading, you get a permissioned blockchain (consistency and liveness 

are trivially satisfied). 

(recall) Permissioned blockchain assumes

known governance (i.e., nodes that maintain the full list of transactions)

In the permissionless setting the above approach fails spectacularly: nothing 

is certified, governance is open, the set of possible leaders is unknown and 

dynamic. 
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From Permissioned to Permissionless: is it possible at all?

In the permissionless setting the above approach fails spectacularly: nothing 

is certified, governance is open, the set of possible leaders is unknown and 

dynamic. 

• Who is the next leader? 

• If multiple possible leaders propose conflicting blocks, which one we pick? 

• Honest majority does not make sense without a PKI, through sybil attacks 

the adversary can be always in power.

No much progress to solve this (seemingly unfeasible) problem until the 

breakthrough of Nakamoto [Nak08], with more cryptographic tools.



Natural intuition: if players are 
anonymous then Consensus is 
impossible

• A basic cloning technique (known as Sybil 
Attack) allows the adversary to 
easily reach a dishonest majority

• This is a limitation of the «one person ➔ one 
vote» approach in the permissioned setting

38
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From Permissioned to Permissionless: is it possible at all?

In the permissionless setting the above approach fails spectacularly: nothing is 

certified, governance is open, the set of possible leaders is unknown and dynamic.

• Who is the next leader?

• If multiple possible leaders propose conflicting blocks, which one we pick?

• Honest majority does not make sense without a PKI, through sybil attacks the 

adversary can be always in power.

No much progress to solve this (seemingly unfeasible) problem until the 

breakthrough of Nakamoto [Nak08], with cryptographic tools and spectacular 

ideas.



Collision-
Resistant 
Hash 
Functions

A function H:{0,1}m-->{0,1}n is
a CRHF if:

1) m>n

2) it is hard to find two 
different inputs x,y such that 
H(x)=H(y)

despite the obvious existence 
of many of such "collisions"



Collision-
Resistant 
Hash 
Functions

A standard CRHFs 
currently used in the real 

world  is SHA256

SHA256: {0,1}*→ {0,1}256



Parameterized 
Puzzle

Starting with a 
random rand
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a small set Z, and 
the size of Z is a 
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Parameterized 
Puzzle

Starting with a random 
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we can define a small set Z, 
and the size of Z is a 
difficulty parameter

The puzzle consists in finding 
x such that H(rand || x) ∈ Z. 
Verification is fast!



Parameterized 
Puzzle

Starting with a random rand

we can define a small set Z, and the size of Z 
is a difficulty parameter

The puzzle consists in finding x such that

H(rand || x) ∈ Z. Verification is fast!

The heuristic assumption is that H can only be 
queried to learn an output (i.e., it is a random 
oracle), and thus the only solving strategy 
consists of trying random values for x.



Hash 
Pointer

H(x) = y can be interpreted as

y is a pointer to x

The intuition is that 

x is somewhere, and it's big, 
therefore

y can be somewhere else

and to understand what y 
represents you should follow the 
pointer

x

y



Having pointers we can then build a list



Having pointers we can then build a list

Changing a bit of xj (with any 1<=j<=5) invalidates all next pointers

y5 represents x1,…,x5 when yi=H(yi-1 || xi)



Nakamoto's 

challenging 

permissionless

setting

Peer-to-peer network:

•governance and use transactions are open to anyone
(anonymously)

Issues in P2P networks:

•nodes can be offline

•nodes can misbehave

•channel is unreliable

•no common clock

The main problem: Consensus

•strong coordination is required to have a common view of 
what happened in the past

•strong coordination is required to decide what to do next

•this strong coordination must be done in the above fragile 
P2P anonymous setting

49



Requirements for Consensus

All correct nodes 
obtain in 

output the same 
valid value

Every valid 
transaction should 

eventually be 
accepted

50



From known blocks to the next block

Note: we don’t need to opt for the most common proposal

51



The main point is to agree52

If honest nodes will sometimes manage to add blocks then 

liveness will be satisfied



The breakthrough of Nakamoto

from one person ➔ one vote
to one computation ➔ one ticket (a scratch card)

the computation is an attempt to solve a puzzle

check whether H(x|A|B') has first 32 bits = 0

(x is the solution to the puzzle, A is the previous 
Block, B’ is the new block with just the solution of the 
puzzle missing)

rewards attract honest computational power 
defeating the sybil attack

53



The breakthrough of Nakamoto

from one person ➔ one vote
to one computation ➔ one ticket (a scratch card)

the computation is an attempt to solve a puzzle

find x such that H(x|A|B') has first 70 bits = 0

(x is the solution to the puzzle, A is the previous 
Block, B’ is the new block with just the solution of the 
puzzle missing and can’t be changed after the fact)

rewards attract honest computational power 
defeating the sybil attack
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The breakthrough of Nakamoto

from one person ➔ one vote
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The breakthrough of Nakamoto

From one person ➔ one vote
to one computation ➔ one ticket (a scratch card).

No reason to talk to others while scratching cards, 
just make some computations (i.e., proofs of work) 
and if you win the lottery just announce it.

By giving incentives you get also a huge honest 
computational power that justifies the main 
trust assumption: adversary has less than half of 
the global computational power (i.e., the hash rate 
of the adversary must be lower than the hash rate 
of the “correct” nodes)
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Key Steps in 
Nakamoto’s 
Consensus 

Transactions are broadcasted

Each node prepares a block and 
repeatedly scratches cards

The winner announces the new block

Everyone agrees if the block is well 
formed

The hash of the added block will be part 
of the next block

If there are more winners the rule is to 
stick with the longest chain and in case 

of tie, with the discovered first

It is crucial to start with a public setup, a 
genesis block that has not been decided 

(or even seen in advance) by an adversary



We can 

check… https://www.blockchain.com/btc/block/0
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https://www.blockchain.com/btc/block/0


We can 

check…
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We can 

check…
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We can 

check…

https://www.blockchain.com/btc/block/0

echo 
5468652054696d65732030332f4a616e2f32303039204368616e63656c6c6f72206f6e
206272696e6b206f66207365636f6e64206261696c6f757420666f722062616e6b73 | 

xxd -r –p

Or use

https://string-functions.com/hex-string.aspx

61

https://www.blockchain.com/btc/block/0
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Forks (and double spending)

If (1,2,3) is announced much before (1,2,4) then clearly 

everyone will stay with (1,2,3)



64

Forks (and double spending)

If (1,2,3) and (1,2,4) are announced almost at the same time, then there is a 

“fork”, but most likely one of the two will grow more quickly .

Takeaway: the last blocks are unreliable, commonly in Bitcoin 6 confirmations 

(i.e., a chain extended with 5 more blocks) are required before considering a 

transaction finalized in the blockchain.

Note: in general forks can happen and are bad also when everyone is honest (e.g., 
bids in auctions). These issues must be known to whoever builds applications.
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Main idea: we assume in general the synchronous model but knowing that 

sometimes for a time windows of unknown length, the synchronous model can 

fail, still we want to make sure that some properties (i.e., consistency or 

liveness) are preserved.

…

Note: Nakamoto showed the power of targeting liveness instead of 

consistency when things go wrong (i.e., in the presence of forks).

In Nakamoto's consensus, during a fork there is no consistency, but valid 

transactions are (temporary) added (potentially in all branches).

Recall: The Partially Synchronous Model



PoW in 

Bitcoin: 

impressive 

waste of 

resources

>270 hashes are generated 
within 10 minutes to add a 
new block

The difficulty is adjusted 
automatically every two 
weeks (the goal is to have 10 
minutes on average)
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Nakamoto Consensus from Proofs of Work

it achieves consistency and liveness with the caveat that a 
transaction can be considered confirmed with high probability 
only when becoming deeper in the chain

the finality parameter is unspecified and thus up to the user

blocks should not be added too frequently compared to 
network delays to limit the negative impact of (even honest) 
forks

67
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Nakamoto Consensus from Proofs of Work

[PSS17] proved that the honest majority of computational 
power suffices in the synchronous model with a bounded 
delay (see also [GKL15] for the synchronous model)

Notice that unlike in the permissioned setting, results in the 
synchronous model do not necessarily hold with bounded 
delay (e.g., the adversary can exploit delays to gain some 
advantages with proofs of work)

In the partially synchronous model consistency fails [PSS17].
Result of [LPR20,LPR21] show that this is essentially inherent for 
PoW-based consensus.

68
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Nakamoto Consensus from Proofs of Work

Practically validated (e.g., Bitcoin, Ethereum*,…)

Problem: a PoW naturally wastes a lot of energy/resources

69
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Recap on Innovations in Nakamoto Consensus

70

• Preferring liveness instead of consistency when there is a choice (longest 

chain rule)

• Limiting the attack surface of the Byzantine leader by making difficult the 

generation of conflicting blocks (proofs of work rather than signatures)

• Revisiting the generic definition of efficient adversary (i.e., probabilistic 

polynomial-time machine) proposing instead the honest majority of 

computational power

• Introducing incentives to make somewhat irrational any deviation from honest 

behavior 



Limitations in Nakamoto Consensus

71

• Transactions are considered confirmed after long time and only probabilistically (and if the puzzle is too 

easy to solve then there are too many forks and security decreases)

• Proofs of work waste energy (electricity and dedicated HW) and this is bad for the environment, there 

is an additional risk of becoming illegal in some countries (e.g., recent issues with the mixer Tornado 

Cash), affecting decentralization

• Proofs of work are expensive and thus they require proper incentives, and this can be problematic (not 

clear how to establish a stable incentive mechanism, where to pick resources, what players could 

adversarially try to do (e.g., selfish mining [ES14]))

• The cost for energy is not the same everywhere in the world, therefore mining could be convenient in 

some specific locations only, against decentralization

• Concentration of resources in mining pools might damage decentralization
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(i.e., Permissioned Blockchains)

• Part 2: Nakamoto Consensus
(i.e., Permissionless Blockchains with slow finality)

• Part 3: Algorand Consensus
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How to Get Updates After Being Off-Line?

73

A typical problem in permissionless blockchains is that nodes are not 

permanently online and there is no trusted server to contact in order to get 

updates after an offline period.

How do we solve this problem in the real life? If we are part of a community and 

for a while we do not participate in its activities, how do we get updated when 

returning active?

There is a simple answer. We ask a few members of the community, in 

particular the ones that have more visibility and better reputation; we make sure 

that all answers are consistent before believing in them.
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A typical problem in permissionless blockchains is that nodes are not 

permanently online and there is no trusted server to contact in order to get 

updates after an offline period.
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How to Get Updates After Being Off-Line?
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How do we translate the above natural solution to permissionless blockchain? 

The visible actors are the ones owning a lot of cryptocurrency, so it is natural to 

refer to them.

The above reasoning motivates Proof-of-Stake (PoS) Consensus: the leader 

that will propose the next block should be selected among prior participants, and 

stake possession is an objective measure of participation.

Interestingly, PoS has been considered only after PoW in permissionless 

blockchains.
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How do we translate the above natural solution to permissionless blockchain? 

The visible actors are the ones owning a lot of cryptocurrency, so it is natural to 

refer to them.

The above reasoning motivates Proof-of-Stake (PoS) Consensus: the leader 

that will propose the next block should be selected among prior participants, and 

stake possession is an objective measure of participation.

Interestingly, PoS has been considered only after PoW in permissionless 

blockchains.
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In PoS consensus it is easier to leverage BFT protocols since one can talk 

about a specific number of parties (stakeholders) and their public identities (i.e., 

public keys corresponding to their stake).

Assumption of honest majority in terms of stake possession could be considered 

more realistic than dedicated hardware possession.

In PoS the leader proposing a block is not anonymous while it could potentially 

be a new entry in PoW. This might introduce risks of coercion (e.g., a criminal 

announces that whoever adds transactions from a given PK will be 

attacked). There are some proposals for "anonymous" PoS but they are far from 

being practical.
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In PoS consensus it is easier to leverage BFT protocols since one can talk 

about a specific number of parties (stakeholders) and their public identities (i.e., 

public keys corresponding to their stake).

Assumption of honest majority in terms of stake possession could be considered 

more realistic than dedicated hardware possession.

In PoS the leader proposing a block can not be anonymous unlike in PoW. This 

might introduce risks of coercion (e.g., a criminal announces that whoever adds 

transactions from a given public key will be attacked). There are some 

proposals for "anonymous" PoS but they are far from being practical.
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The stake is naturally 
represented by a public 
key PK and an amount 

of cryptocurrency n

The paradigm of running 
a lottery requires to have 
one ticket for every unit 

of cryptocurrency

If the adversary is not 
very rich, the honest 
majority will win the 
lottery more often 
than the adversary

How do we run a lottery? 

Ideally a scratch 
card lottery
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Scratch cards using stake, how?

 For simplicity, if I have n units of cryptocurrency I should be able to run

 Eval(…,1)=…

 Eval(…,2)=…

 …

 Eval(…,n)=…

 It is useful that Eval be deterministic (otherwise everyone will have infinite attempts)

 It is useful that the outputs of Eval look random (otherwise the lottery could be unfair)

 It is useful that Eval can be run only by stakeholders and that the result be verifiable 
by everyone



Verifiable Random Functions

[MRV99]

 GenKey(keylength)➔ (PK,SK)

 Eval(SK, i || prev_block) ➔ 010101101010101101011110=R

 GenProof(SK, i || prev_block) ➔ 1111010101101010101010101=PROOF

 Verify(PK, i || prev_block, R,PROOF)=1

 All algorithms should be fast (it is ok if GenKey is a bit slow)

 R should look random (i.e., on new inputs every single bit could equally be 0 or 1)

 It is hard to produce a fake key PK so that Verify can be equal to 1 with both (R,PROOF) 
and (R',PROOF') with R'<>R



Verifiable Random Functions

Trivial construction with ROs and 

Unique Signatures

 GenKey(keylength)➔ (PK,SK)

 Eval(SK, i || prev_block) ➔ 010101101010101101011110=R

 GenProof(SK, i || prev_block) ➔ 1111010101101010101010101=PROOF

 Verify(PK, i || prev_block, R,PROOF)=1

 Let (GenKeyU,SigU,VerU) be a Unique* Signature Scheme (i.e., signatures are deterministic)

 Set GenKey=GenKeyU

 Eval(…) will simply be H(SigU(…)) where H is a random oracle

 GenProof(…) will simply be SigU(…)

 Verify(…) will run VerU on PROOF, and will check that R=H(PROOF)

*additional properties are required but for simplicity we omit them



PoS: state of affairs

Much greener than PoW

Above leader selection + longest chain rule is used in Cardano still with slow finality

Above leader selection + committee selection + BFT is used in Algorand with fast finality

Some issues not applicable to PoW: Nothing at stake attack/Long range attack

Liveness issue: I'm a stake owner, small amounts as many others, I like to

play with some smart contracts, should I always be online???

Adaptive corruption: there might be room for a winner to "sell" the content of the block   

that will be added



Algorand: a (Pure)PoS Blockchain 

[CM19, CGMV18, GHMVZ17]

VRF is used to select a block proposer (there can be more than one of course, and there is an 
associated priority) and to select a committee (hundreds of members); this selection is referred as 
cryptographic sortition

A BFT protocol is executed by the committee to approve the proposed block, the initial input is 
the block with highest priority

Liveness requires attention since without large participation to the consensus there will be no 
block created (similarly in case of weak synchronousity), this is because the BA will have too few 
participants and the required threshold of votes for a block will not be reached

Adversary must be below 1/3 of the stake

Famous cryptographers (and more) are part of the team started by the Turing award Silvio Micali
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Interesting Features of Algorand [CM19, CGMV18, GHMVZ17]



Are Stakeholders Really Required to 
Continuously Use Their Precious Secret Keys?

➢

➢

➢

➢

➢
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