
Blockchain
consensus

mechanisms

Ivan Visconti
ivan.visconti@gmail.com

International School on Algorand Smart Contracts

Outline

2

• Part 1: Old-School Consensus
(i.e., Permissioned Blockchains)

• Part 2: Nakamoto Consensus
(i.e., Permissionless Blockchains with slow finality)

• Part 3: Algorand Consensus
(i.e., Permissionless Blockchains with fast finality)

Informal definition of blockchain

A blockchain is a decentralized computer publicly running
programs (smart contracts) on inputs received through
transactions. The state of this computer is uniquely
defined by the sequence of transactions executed from
the genesis.

Where is the blockchain stored?

The only requirement is that it is jointly maintained by
several (pretty much mutually distrustful) computers.

For simplicity, we will assume that "jointly maintained"
means that multiple computers store a fully copy of the
blockchain (i.e., the entire sequence of transactions). This
is true in several cases (e.g., full nodes in Bitcoin) but it is
not always necessarily true.

Major problem towards designing a blockchain:

How do we make sure that all computers
maintaining a blockchain have a common view of its
state?

Major problem towards designing a blockchain:

How do we make sure that all computers
maintaining a blockchain have a common view of its
state?

...even in the presence of faults (i.e., crashes, omissions, byzantine behavior)...

Consensus 7

Consensus Layer

Scalability Layer

Application Layer

Blockchain: a possible view in multiple layers

Some generals are attacking a fortress

and must decide as a group only

whether to attack or retreat. Some

generals may prefer to attack, while
others may prefer to retreat. The

important thing is that all generals

agree on a common decision.

8

[LSP 82]:
Byzantine
Agreement
/Broadcast
(Generals)
problem

[LSP 82]:
Byzantine
Agreement
/Broadcast
(Generals)
problem

Some generals are attacking a fortress

and must decide as a group only
whether to attack or retreat. Some

generals may prefer to attack, while

others may prefer to retreat. The
important thing is that all generals

agree on a common decision.

Subtlety: if there is only one source then it’s a

specific (simpler) case called broadcast and

it’s the actual Byzantine Generals problem.

With multiple generals we have the

Byzantine Agreement problem.

9

Cryptography

10

Several cryptographic tools have been proposed to design

blockchains with improved features. We will recall some of such useful

tools just before using them.

We start with digital signatures.

Ittai Abraham, Oct 23, 2021 (twitter, [Abr21]):
"Cryptography is eating the world"

Cryptography

11

Several cryptographic tools have been proposed to design

blockchains with improved features. We will recall some of such useful

tools just before using them.

We start with digital signatures.

Ittai Abraham, Oct 23, 2021 (twitter, [Abr21]):
"Cryptography is eating the world"

Digital signatures
schemes

(sk, pk) = KeyGen(keylength)

s = Sign(sk, m)

(can be deterministic)

0/1 = Ver(pk, m, s)

Properties of a
signature scheme

Ver(pk, m, Sign(sk, m)) == 1

No adversary can produce an
accepting signature of a new
(i.e., not already signed by the
owner of sk) message

Signature schemes achieve non-
repudiability

PKI and
"Authenticated"

functionalities

A public-key infrastructure
guarantees in the eyes of all honest
players, that a given public key
belongs to some specific entity.

This is beneficial in protocol design
since an adversary that generates
two inconsistent messages can be
detected and slashed.

Functionalities achieved through
protocols that explore this feature
are sometimes called
“authenticated”.

15

Realizing SMR requires to solve the consensus problem, namely:

Consistency: honest nodes must have the same view of the state of the machine

Liveness: every valid transaction will be executed updating the state of the machine

State Machine Replication [Lam78,Sch90] (Ledger Consensus)

One server (a machine) is split into multiple servers all sharing the same state

(i.e., realizing the same machine) to prevent faults, even byzantine faults (i.e.,

corruption), therefore leaning to distributed (and even decentralized) systems.

It corresponds to what is nowadays known as permissioned blockchain where the

number and the identities of nodes maintaining the blockchain is known up front.

16

Realizing SMR (i.e., resolving the ledger consensus problem) requires to achieve

two main goals, namely:

Consistency: honest nodes must have the same view of the state of the machine

Liveness: every valid transaction will be executed updating the state of the machine

State Machine Replication [Lam78,Sch90] (Ledger Consensus)

One server (a machine) is split into multiple servers all sharing the same state

(i.e., realizing the same machine) to prevent faults, even byzantine faults (i.e.,

corruption), therefore leaning to distributed (and even decentralized) systems.

It corresponds to what is nowadays known as permissioned blockchain where the

number and the identities of nodes maintaining the blockchain is known up front.

17

Realizing SMR (i.e., resolving the ledger consensus problem) requires to achieve

two main goals, namely:

Consistency: honest nodes must have the same view of the state of the machine

Liveness: every valid transaction will be executed updating the state of the machine

State Machine Replication [Lam78,Sch90] (Ledger Consensus)

One server (a machine) is split into multiple servers all sharing the same state

(i.e., realizing the same machine) to prevent faults, even byzantine faults (i.e.,

corruption), therefore leaning to distributed (and even decentralized) systems.

It corresponds to what is nowadays known as permissioned blockchain where the

number and the identities of nodes maintaining the blockchain is known up front.

18

With a synchronous network without adversaries the problem is trivial: just with

rotating leaders each announcing a block of transactions when leading, you

get a permissioned blockchain (consistency and liveness are trivially satisfied)

Permissioned blockchain assumes

known governance (i.e., nodes that maintain the full list of transactions)

In a synchronous network the is a global clock and all nodes are aligned to it.

Everyone can expect what other are doing at a given timestep, and a message

sent during timestamp t is delivered by timestamp t+1.

This is clearly excessive in real-world scenarios, particularly when breaking

synchronously (e.g., through a DDOS attack) can have a devastating impact.

19

In the synchronous model, without adversaries, solving the consensus problem

is trivial: just with rotating leaders each announcing a block of transactions

when leading, you get a permissioned blockchain (consistency and liveness

are trivially satisfied).

Permissioned blockchain assumes

known governance (i.e., nodes that maintain the full list of transactions)

In a synchronous network the is a global clock and all nodes are aligned to it.

Everyone can expect what other are doing at a given timestep, and a message

sent during timestamp t is delivered by timestamp t+1.

This is clearly excessive in real-world scenarios, particularly when breaking

synchronously (e.g., through a DDOS attack) can have a devastating impact.

20

In the synchronous model, without adversaries, solving the consensus problem

is trivial: just with rotating leaders each announcing a block of transactions

when leading, you get a permissioned blockchain (consistency and liveness

are trivially satisfied).

Permissioned blockchain assumes

known governance (i.e., nodes that maintain the full list of transactions)

In the synchronous model there is a global clock and all nodes are aligned to it.

Everyone can expect what others are doing at a given timestep, and a

message sent during timestamp t is delivered by timestamp t+1.

This might be excessive in some real-world scenarios, particularly when

breaking synchrony (e.g., through a DDOS attack) can have a devastating

impact.

21

In the synchronous model, without adversaries, solving the consensus problem is trivial: just with

rotating leaders each announcing a block of transactions when leading, you get a permissioned block

chain (consistency and liveness are trivially satisfied).

From Byzantine Broadcast to SMR / Ledger Consensus

22

In the synchronous model, without adversaries, solving the consensus problem is trivial: just with

rotating leaders each announcing a block of transactions when leading, you get a permissioned block

chain (consistency and liveness are trivially satisfied).

If a byzantine broadcast (BB) protocol is used by the leader, then we get a

permissioned blockchain in the presence of byzantine adversaries:

BB: agreement (honest nodes get same msg) => consistency

BB: validity (sender is honest with input m, honest nodes get msg=m) => liveness

From Byzantine Broadcast to SMR / Ledger Consensus

23

In the synchronous model, without adversaries, solving the consensus problem is trivial: just with

rotating leaders each announcing a block of transactions when leading, you get a permissioned block

chain (consistency and liveness are trivially satisfied).

If a byzantine broadcast (BB) protocol is used by the leader, then we get a

permissioned blockchain in the presence of byzantine adversaries:

BB: agreement (honest nodes get same msg) => consistency

BB: validity (sender is honest with input m, honest nodes get msg=m) => liveness
(we omit the (obvious) termination condition, for simplicity)

[DS83] gives a simple BB protocol (with sync+permissioned+PKI)

for any number of faulty nodes (but for useful SMR honesty should be majority)​.

PKI is crucial to tolerate that faulty nodes are more than 1/3 of the total[PSL80]

From Byzantine Broadcast to SMR / Ledger Consensus

24

In the synchronous model, without adversaries, solving the consensus problem is trivial: just with

rotating leaders each announcing a block of transactions when leading, you get a permissioned block

chain (consistency and liveness are trivially satisfied).

If a byzantine broadcast (BB) protocol is used by the leader, then we get a

permissioned blockchain in the presence of byzantine adversaries:

BB: agreement (honest nodes get same msg) => consistency

BB: validity (sender is honest with input m, honest nodes get msg=m) => liveness

(we omit the (obvious) termination condition, for simplicity)

[DS83] gives a simple BB protocol (with sync+permissioned+PKI)

for any number of faulty nodes (but for useful SMR honesty should be majority)​.

PKI is crucial to tolerate that faulty nodes are more than 1/3 of the total [PSL80]

From Byzantine Broadcast to SMR / Ledger Consensus

Recap

25

SMR / Ledger Consensus: (n rotating nodes proposing state updates)

Goal: Consistency + Liveness

Byzantine Broadcast: (one node sending a message to all others)

Goal: Agreement + Validity

Rotating Leaders + BB [DS83] + sync model + permissioned + PKI

==> SMR with honest majority (without PKI then super majority is

required)

26

We have seen that in the synchronous model we can construct efficient

protocols, but the model might not correspond sufficiently well to reality.

Relaxing the Synchronous Model

27

(Fully) asynchronous model: there is no upperbound on the time needed for a

sent message to reach the receiver (but messages eventually are received).

PROs: great applicability to concrete scenarios;

CONs: very hard setting affected by negative results (e.g., [FLP85]:

impossibility of deterministic byzantine agreement even with just one crashing

node, due to the difficulty of distinguishing a crash from a delayed message).

Relaxing the Synchronous Model

We have seen that in the synchronous model we can construct efficient

protocols, but the model might not correspond sufficiently well to reality.

28

(Fully) asynchronous model: there is no upperbound on the time needed for a

sent message to reach the receiver (but messages eventually are received).

PROs: great applicability to concrete scenarios;

CONs: very hard setting affected by negative results (e.g., [FLP85]:

impossibility of deterministic byzantine agreement even with just one crashing

node, due to the difficulty of distinguishing a crash from a delayed message).

Fortunately, we can get the best of both worlds: the partially synchronous

model [DLS88].

Relaxing the Synchronous Model

We have seen that in the synchronous model we can construct efficient

protocols, but the model might not correspond sufficiently well to reality.

29

Main idea: we assume to be in general the synchronous model but knowing

that sometimes for a time window of unknown length, the synchronous

model can fail., still we want to make sure that some properties (i.e.,

consistency or liveness) are preserved.

Summing up, we want to guarantee:

• while good sync, consistency + liveness

• while poor sync, consistency

Note: Nakamoto showed the power of targeting liveness instead of consistency

when things go wrong (i.e., in the presence of forks).

The Partially Synchronous Model

30

Summing up, we want:

• while good sync, consistency + liveness

• while poor sync, consistency

The above goal can be achieved if and only if corruption is under the 1/3

threshold [DLS88].

"only if": the point is that with t corrupted nodes, the honest node can not wait

for more than n-t messages, but t of those n-t messages could come from the

adversary. So, when t>=n/3 we have that the messages from honest parties

out of those n-t messages are not majority. PKI does not avoid this bound.

The Partially Synchronous Model

31

Summing up, we want:

• while good sync, consistency + liveness

• while poor sync, consistency

The above goal can be achieved if and only if corruption is under the 1/3

threshold [DLS88].

There exists many protocols achieving this bound and often they are grouped

in the alias "BFT protocol". Recall: so far, we have considered the

permissioned setting.

The Partially Synchronous Model

Permissioned Blockchain

some known organizations decide the state
of the computer

- no waste of energy
- strong consistency
- fast transactions if network not under attack
- honest majority (usually super majority) is required

Outline

33

• Part 1: Old-School Consensus
(i.e., Permissioned Blockchains)

• Part 2: Nakamoto Consensus
(i.e., Permissionless Blockchains with slow finality)

• Part 3: Algorand Consensus
(i.e., Permissionless Blockchains with fast finality)

34

From Permissioned to Permissionless: is it possible at all?

(recall) Permissioned blockchain assumes

known governance (i.e., nodes that maintain the full list of transactions)

35

From Permissioned to Permissionless: is it possible at all?

In the synchronous model, without adversaries, solving the consensus problem

is trivial: just with rotating leaders each announcing a block of transactions

when leading, you get a permissioned blockchain (consistency and liveness

are trivially satisfied).

(recall) Permissioned blockchain assumes

known governance (i.e., nodes that maintain the full list of transactions)

36

From Permissioned to Permissionless: is it possible at all?

In the synchronous model, without adversaries, solving the consensus problem

is trivial: just with rotating leaders each announcing a block of transactions

when leading, you get a permissioned blockchain (consistency and liveness

are trivially satisfied).

(recall) Permissioned blockchain assumes

known governance (i.e., nodes that maintain the full list of transactions)

In the permissionless setting the above approach fails spectacularly: nothing

is certified, governance is open, the set of possible leaders is unknown and

dynamic.

37

From Permissioned to Permissionless: is it possible at all?

In the permissionless setting the above approach fails spectacularly: nothing

is certified, governance is open, the set of possible leaders is unknown and

dynamic.

• Who is the next leader?

• If multiple possible leaders propose conflicting blocks, which one we pick?

• Honest majority does not make sense without a PKI, through sybil attacks

the adversary can be always in power.

No much progress to solve this (seemingly unfeasible) problem until the

breakthrough of Nakamoto [Nak08], with more cryptographic tools.

Natural intuition: if players are
anonymous then Consensus is
impossible

• A basic cloning technique (known as Sybil
Attack) allows the adversary to
easily reach a dishonest majority

• This is a limitation of the «one person ➔ one
vote» approach in the permissioned setting

38

39

From Permissioned to Permissionless: is it possible at all?

In the permissionless setting the above approach fails spectacularly: nothing is

certified, governance is open, the set of possible leaders is unknown and dynamic.

• Who is the next leader?

• If multiple possible leaders propose conflicting blocks, which one we pick?

• Honest majority does not make sense without a PKI, through sybil attacks the

adversary can be always in power.

No much progress to solve this (seemingly unfeasible) problem until the

breakthrough of Nakamoto [Nak08], with cryptographic tools and spectacular

ideas.

Collision-
Resistant
Hash
Functions

A function H:{0,1}m-->{0,1}n is
a CRHF if:

1) m>n

2) it is hard to find two
different inputs x,y such that
H(x)=H(y)

despite the obvious existence
of many of such "collisions"

Collision-
Resistant
Hash
Functions

A standard CRHFs
currently used in the real

world is SHA256

SHA256: {0,1}*→ {0,1}256

Parameterized
Puzzle

Starting with a
random rand

Parameterized
Puzzle

Starting with a
random rand

we can define
a small set Z, and
the size of Z is a
difficulty
parameter

Parameterized
Puzzle

Starting with a random
rand

we can define a small set Z,
and the size of Z is a
difficulty parameter

The puzzle consists in finding
x such that H(rand || x) ∈ Z.
Verification is fast!

Parameterized
Puzzle

Starting with a random rand

we can define a small set Z, and the size of Z
is a difficulty parameter

The puzzle consists in finding x such that

H(rand || x) ∈ Z. Verification is fast!

The heuristic assumption is that H can only be
queried to learn an output (i.e., it is a random
oracle), and thus the only solving strategy
consists of trying random values for x.

Hash
Pointer

H(x) = y can be interpreted as

y is a pointer to x

The intuition is that

x is somewhere, and it's big,
therefore

y can be somewhere else

and to understand what y
represents you should follow the
pointer

x

y

Having pointers we can then build a list

Having pointers we can then build a list

Changing a bit of xj (with any 1<=j<=5) invalidates all next pointers

y5 represents x1,…,x5 when yi=H(yi-1 || xi)

Nakamoto's

challenging

permissionless

setting

Peer-to-peer network:

•governance and use transactions are open to anyone
(anonymously)

Issues in P2P networks:

•nodes can be offline

•nodes can misbehave

•channel is unreliable

•no common clock

The main problem: Consensus

•strong coordination is required to have a common view of
what happened in the past

•strong coordination is required to decide what to do next

•this strong coordination must be done in the above fragile
P2P anonymous setting

49

Requirements for Consensus

All correct nodes
obtain in

output the same
valid value

Every valid
transaction should

eventually be
accepted

50

From known blocks to the next block

Note: we don’t need to opt for the most common proposal

51

The main point is to agree52

If honest nodes will sometimes manage to add blocks then

liveness will be satisfied

The breakthrough of Nakamoto

from one person ➔ one vote
to one computation ➔ one ticket (a scratch card)

the computation is an attempt to solve a puzzle

check whether H(x|A|B') has first 32 bits = 0

(x is the solution to the puzzle, A is the previous
Block, B’ is the new block with just the solution of the
puzzle missing)

rewards attract honest computational power
defeating the sybil attack

53

The breakthrough of Nakamoto

from one person ➔ one vote
to one computation ➔ one ticket (a scratch card)

the computation is an attempt to solve a puzzle

find x such that H(x|A|B') has first 70 bits = 0

(x is the solution to the puzzle, A is the previous
Block, B’ is the new block with just the solution of the
puzzle missing and can’t be changed after the fact)

rewards attract honest computational power
defeating the sybil attack

54

The breakthrough of Nakamoto

from one person ➔ one vote
to one computation ➔ one ticket (a scratch card)

the computation is an attempt to solve a puzzle

find x such that H(x|A|B') has first 70 bits = 0

(x is the solution to the puzzle, A is the previous
Block, B’ is the new block with just the solution of the
puzzle missing and can’t be changed after the fact)

rewards attract honest computational power
defeating the sybil attack

55

The breakthrough of Nakamoto

From one person ➔ one vote
to one computation ➔ one ticket (a scratch card).

No reason to talk to others while scratching cards,
just make some computations (i.e., proofs of work)
and if you win the lottery just announce it.

By giving incentives you get also a huge honest
computational power that justifies the main
trust assumption: adversary has less than half of
the global computational power (i.e., the hash rate
of the adversary must be lower than the hash rate
of the “correct” nodes)

56

Key Steps in
Nakamoto’s
Consensus

Transactions are broadcasted

Each node prepares a block and
repeatedly scratches cards

The winner announces the new block

Everyone agrees if the block is well
formed

The hash of the added block will be part
of the next block

If there are more winners the rule is to
stick with the longest chain and in case

of tie, with the discovered first

It is crucial to start with a public setup, a
genesis block that has not been decided

(or even seen in advance) by an adversary

We can

check… https://www.blockchain.com/btc/block/0
58

https://www.blockchain.com/btc/block/0

We can

check…
59

We can

check…
60

We can

check…

https://www.blockchain.com/btc/block/0

echo
5468652054696d65732030332f4a616e2f32303039204368616e63656c6c6f72206f6e
206272696e6b206f66207365636f6e64206261696c6f757420666f722062616e6b73 |

xxd -r –p

Or use

https://string-functions.com/hex-string.aspx

61

https://www.blockchain.com/btc/block/0

63

Forks (and double spending)

If (1,2,3) is announced much before (1,2,4) then clearly

everyone will stay with (1,2,3)

64

Forks (and double spending)

If (1,2,3) and (1,2,4) are announced almost at the same time, then there is a

“fork”, but most likely one of the two will grow more quickly .

Takeaway: the last blocks are unreliable, commonly in Bitcoin 6 confirmations

(i.e., a chain extended with 5 more blocks) are required before considering a

transaction finalized in the blockchain.

Note: in general forks can happen and are bad also when everyone is honest (e.g.,
bids in auctions). These issues must be known to whoever builds applications.

65

Main idea: we assume in general the synchronous model but knowing that

sometimes for a time windows of unknown length, the synchronous model can

fail, still we want to make sure that some properties (i.e., consistency or

liveness) are preserved.

…

Note: Nakamoto showed the power of targeting liveness instead of

consistency when things go wrong (i.e., in the presence of forks).

In Nakamoto's consensus, during a fork there is no consistency, but valid

transactions are (temporary) added (potentially in all branches).

Recall: The Partially Synchronous Model

PoW in

Bitcoin:

impressive

waste of

resources

>270 hashes are generated
within 10 minutes to add a
new block

The difficulty is adjusted
automatically every two
weeks (the goal is to have 10
minutes on average)

66

Nakamoto Consensus from Proofs of Work

it achieves consistency and liveness with the caveat that a
transaction can be considered confirmed with high probability
only when becoming deeper in the chain

the finality parameter is unspecified and thus up to the user

blocks should not be added too frequently compared to
network delays to limit the negative impact of (even honest)
forks

67

67

Nakamoto Consensus from Proofs of Work

[PSS17] proved that the honest majority of computational
power suffices in the synchronous model with a bounded
delay (see also [GKL15] for the synchronous model)

Notice that unlike in the permissioned setting, results in the
synchronous model do not necessarily hold with bounded
delay (e.g., the adversary can exploit delays to gain some
advantages with proofs of work)

In the partially synchronous model consistency fails [PSS17].
Result of [LPR20,LPR21] show that this is essentially inherent for
PoW-based consensus.

68

68

Nakamoto Consensus from Proofs of Work

Practically validated (e.g., Bitcoin, Ethereum*,…)

Problem: a PoW naturally wastes a lot of energy/resources

69

69

Recap on Innovations in Nakamoto Consensus

70

• Preferring liveness instead of consistency when there is a choice (longest

chain rule)

• Limiting the attack surface of the Byzantine leader by making difficult the

generation of conflicting blocks (proofs of work rather than signatures)

• Revisiting the generic definition of efficient adversary (i.e., probabilistic

polynomial-time machine) proposing instead the honest majority of

computational power

• Introducing incentives to make somewhat irrational any deviation from honest

behavior

Limitations in Nakamoto Consensus

71

• Transactions are considered confirmed after long time and only probabilistically (and if the puzzle is too

easy to solve then there are too many forks and security decreases)

• Proofs of work waste energy (electricity and dedicated HW) and this is bad for the environment, there

is an additional risk of becoming illegal in some countries (e.g., recent issues with the mixer Tornado

Cash), affecting decentralization

• Proofs of work are expensive and thus they require proper incentives, and this can be problematic (not

clear how to establish a stable incentive mechanism, where to pick resources, what players could

adversarially try to do (e.g., selfish mining [ES14]))

• The cost for energy is not the same everywhere in the world, therefore mining could be convenient in

some specific locations only, against decentralization

• Concentration of resources in mining pools might damage decentralization

Outline

72

• Part 1: Old-School Consensus
(i.e., Permissioned Blockchains)

• Part 2: Nakamoto Consensus
(i.e., Permissionless Blockchains with slow finality)

• Part 3: Algorand Consensus
(i.e., Permissionless Blockchains with fast finality)

How to Get Updates After Being Off-Line?

73

A typical problem in permissionless blockchains is that nodes are not

permanently online and there is no trusted server to contact in order to get

updates after an offline period.

How do we solve this problem in the real life? If we are part of a community and

for a while we do not participate in its activities, how do we get updated when

returning active?

There is a simple answer. We ask a few members of the community, in

particular the ones that have more visibility and better reputation; we make sure

that all answers are consistent before believing in them.

How to Get Updates After Being Off-Line?

74

A typical problem in permissionless blockchains is that nodes are not

permanently online and there is no trusted server to contact in order to get

updates after an offline period.

How do we solve this problem in the real life? If we are part of a community and

for a while we do not participate in its activities, how do we get updates when

returning active?

There is a simple answer. We ask a few members of the community, in

particular the ones that have more visibility and better reputation; we make sure

that all answers are consistent before believing in them.

How to Get Updates After Being Off-Line?

75

A typical problem in permissionless blockchains is that nodes are not

permanently online and there is no trusted server to contact in order to get

updates after an offline period.

How do we solve this problem in the real life? If we are part of a community and

for a while we do not participate in its activities, how do we get updates when

returning active?

There is a simple answer. We ask a few members of the community, in

particular the ones that have more visibility and better reputation; we make sure

that all answers are consistent before believing in them.

How to Get Updates After Being Off-Line?

76

How do we translate the above natural solution to permissionless blockchain?

The visible actors are the ones owning a lot of cryptocurrency, so it is natural to

refer to them.

The above reasoning motivates Proof-of-Stake (PoS) Consensus: the leader

that will propose the next block should be selected among prior participants, and

stake possession is an objective measure of participation.

Interestingly, PoS has been considered only after PoW in permissionless

blockchains.

How to Get Updates After Being Off-Line?

77

How do we translate the above natural solution to permissionless blockchain?

The visible actors are the ones owning a lot of cryptocurrency, so it is natural to

refer to them.

The above reasoning motivates Proof-of-Stake (PoS) Consensus: the leader

that will propose the next block should be selected among prior participants, and

stake possession is an objective measure of participation.

Interestingly, PoS has been considered only after PoW in permissionless

blockchains.

How to Get Updates After Being Off-Line?

78

How do we translate the above natural solution to permissionless blockchain?

The visible actors are the ones owning a lot of cryptocurrency, so it is natural to

refer to them.

The above reasoning motivates Proof-of-Stake (PoS) Consensus: the leader

that will propose the next block should be selected among prior participants, and

stake possession is an objective measure of participation.

Interestingly, PoS has been considered only after PoW in permissionless

blockchains.

How to Get Updates After Being Off-Line?

79

How do we translate the above natural solution to permissionless blockchain?

The visible actors are the ones owning a lot of cryptocurrency, so it is natural to

refer to them.

The above reasoning motivates Proof-of-Stake (PoS) Consensus: the leader

that will propose the next block should be selected among prior participants, and

stake possession is an objective measure of participation.

Interestingly, PoS has been considered only after PoW in permissionless

blockchains.

Anything Special in PoS Compared to PoW?

80

In PoS consensus it is easier to leverage BFT protocols since one can talk

about a specific number of parties (stakeholders) and their public identities (i.e.,

public keys corresponding to their stake).

Assumption of honest majority in terms of stake possession could be considered

more realistic than dedicated hardware possession.

In PoS the leader proposing a block is not anonymous while it could potentially

be a new entry in PoW. This might introduce risks of coercion (e.g., a criminal

announces that whoever adds transactions from a given PK will be

attacked). There are some proposals for "anonymous" PoS but they are far from

being practical.

Anything Special in PoS Compared to PoW?

81

In PoS consensus it is easier to leverage BFT protocols since one can talk

about a specific number of parties (stakeholders) and their public identities (i.e.,

public keys corresponding to their stake).

Assumption of honest majority in terms of stake possession could be considered

more realistic than dedicated hardware possession.

In PoS the leader proposing a block is not anonymous while it could potentially

be a new entry in PoW. This might introduce risks of coercion (e.g., a criminal

announces that whoever adds transactions from a given PK will be

attacked). There are some proposals for "anonymous" PoS but they are far from

being practical.

Anything Special in PoS Compared to PoW?

82

In PoS consensus it is easier to leverage BFT protocols since one can talk

about a specific number of parties (stakeholders) and their public identities (i.e.,

public keys corresponding to their stake).

Assumption of honest majority in terms of stake possession could be considered

more realistic than dedicated hardware possession.

In PoS the leader proposing a block can not be anonymous unlike in PoW. This

might introduce risks of coercion (e.g., a criminal announces that whoever adds

transactions from a given public key will be attacked). There are some

proposals for "anonymous" PoS but they are far from being practical.

PoS: Consensus

The stake is naturally
represented by a public
key PK and an amount

of cryptocurrency n

PoS: Consensus

The stake is naturally
represented by a public
key PK and an amount

of cryptocurrency n

The paradigm of running
a lottery requires to have
one ticket for every unit

of cryptocurrency

If the adversary is not
very rich, the honest
majority will win the
lottery more often
than the adversary

PoS: Consensus

The stake is naturally
represented by a public
key PK and an amount

of cryptocurrency n

The paradigm of running
a lottery requires to have
one ticket for every unit

of cryptocurrency

If the adversary is not
very rich, the honest
majority will win the
lottery more often
than the adversary

How do we run a lottery?

Ideally a scratch
card lottery

Scratch cards using stake, how?

 Ideally, if I have n units of cryptocurrency I should be able to run

 Eval(…,1)=…

 Eval(…,2)=…

 …

 Eval(…,n)=…

Scratch cards using stake, how?

 Ideally, if I have n units of cryptocurrency I should be able to run

 Eval(…,1)=…

 Eval(…,2)=…

 …

 Eval(…,n)=…

 It is useful that Eval be deterministic (otherwise everyone will have infinite
attempts)

Scratch cards using stake, how?

 Ideally, if I have n units of cryptocurrency I should be able to run

 Eval(…,1)=…

 Eval(…,2)=…

 …

 Eval(…,n)=…

 It is useful that Eval be deterministic (otherwise everyone will have infinite
attempts)

 It is useful that the outputs of Eval look random (this makes easier to design
a fair lottery)

Scratch cards using stake, how?

 For simplicity, if I have n units of cryptocurrency I should be able to run

 Eval(…,1)=…

 Eval(…,2)=…

 …

 Eval(…,n)=…

 It is useful that Eval be deterministic (otherwise everyone will have infinite attempts)

 It is useful that the outputs of Eval look random (otherwise the lottery could be unfair)

 It is useful that Eval can be run only by stakeholders and that the result be verifiable
by everyone

Verifiable Random Functions

[MRV99]

 GenKey(keylength)➔ (PK,SK)

 Eval(SK, i || prev_block) ➔ 010101101010101101011110=R

 GenProof(SK, i || prev_block) ➔ 1111010101101010101010101=PROOF

 Verify(PK, i || prev_block, R,PROOF)=1

 All algorithms should be fast (it is ok if GenKey is a bit slow)

 R should look random (i.e., on new inputs every single bit could equally be 0 or 1)

 It is hard to produce a fake key PK so that Verify can be equal to 1 with both (R,PROOF)
and (R',PROOF') with R'<>R

Verifiable Random Functions

Trivial construction with ROs and

Unique Signatures

 GenKey(keylength)➔ (PK,SK)

 Eval(SK, i || prev_block) ➔ 010101101010101101011110=R

 GenProof(SK, i || prev_block) ➔ 1111010101101010101010101=PROOF

 Verify(PK, i || prev_block, R,PROOF)=1

 Let (GenKeyU,SigU,VerU) be a Unique* Signature Scheme (i.e., signatures are deterministic)

 Set GenKey=GenKeyU

 Eval(…) will simply be H(SigU(…)) where H is a random oracle

 GenProof(…) will simply be SigU(…)

 Verify(…) will run VerU on PROOF, and will check that R=H(PROOF)

*additional properties are required but for simplicity we omit them

PoS: state of affairs

Much greener than PoW

Above leader selection + longest chain rule is used in Cardano still with slow finality

Above leader selection + committee selection + BFT is used in Algorand with fast finality

Some issues not applicable to PoW: Nothing at stake attack/Long range attack

Liveness issue: I'm a stake owner, small amounts as many others, I like to

play with some smart contracts, should I always be online???

Adaptive corruption: there might be room for a winner to "sell" the content of the block

that will be added

Algorand: a (Pure)PoS Blockchain

[CM19, CGMV18, GHMVZ17]

VRF is used to select a block proposer (there can be more than one of course, and there is an
associated priority) and to select a committee (hundreds of members); this selection is referred as
cryptographic sortition

A BFT protocol is executed by the committee to approve the proposed block, the initial input is
the block with highest priority

Liveness requires attention since without large participation to the consensus there will be no
block created (similarly in case of weak synchronousity), this is because the BA will have too few
participants and the required threshold of votes for a block will not be reached

Adversary must be below 1/3 of the stake

Famous cryptographers (and more) are part of the team started by the Turing award Silvio Micali

Interesting Features of Algorand [CM19, CGMV18, GHMVZ17]

Interesting Features of Algorand [CM19, CGMV18, GHMVZ17]

Interesting Features of Algorand [CM19, CGMV18, GHMVZ17]

Interesting Features of Algorand [CM19, CGMV18, GHMVZ17]

Interesting Features of Algorand [CM19, CGMV18, GHMVZ17]

Interesting Features of Algorand [CM19, CGMV18, GHMVZ17]

Are Stakeholders Really Required to
Continuously Use Their Precious Secret Keys?

➢

➢

➢

➢

➢

References

101

❑ [Lam78] - Lamport: Time, Clocks and the Ordering of Events in a Distributed System

❑ [PSL80] - Pease, Shostak, Lamport: Reaching Agreement in the Presence of Faults

❑ [LSP82] - Lamport, Shostak, Pease: The Byzantine Generals Problem

❑ [DS83] - Dolev, Strong: Authenticated Algorithms for Byzantine Agreement

❑ [FLP85] - Fischer, Lynch, Paterson: Impossibility of Distributed Consensus with One Faulty Process

❑ [DLS88] - Dwork, Lynch, Stockmeyer: Consensus in the Presence of Partial Synchrony

❑ [Sch90] - Schneider: The state machine approach: A tutorial

❑ [MRV99] - Micali, Rabin, Vadhan: Verifiable Random Functions

❑ [Nak08] - Nakamoto: Bitcoin: A Peer-to-Peer Electronic Cash System

❑ [ES14] - Eyal, Sirer: Majority is not enough: Bitcoin mining is vulnerable

References

102

❑ [GKL15] - Garay, Kiayias, Leonardos: The bitcoin backbone protocol: Analysis and applications

❑ [PSS17] - Pass, Seeman, Shelat: Analysis of the Blockchain Protocol in Asynchronous Networks

❑ [GHMVZ17] - Gilad, Hemo, Micali, Vlachos, Zeldovich: Algorand: Scaling Byzantine Agreements for

Cryptocurrencies

❑ [CGMV18] - Chen, Gorbunov, Micali, Georgios Vlachos: ALGORAND AGREEMENT Super Fast

and Partition Resilient Byzantine Agreement

❑ [CM19] - Chen, Micali: Algorand: A secure and efficient distributed ledger

❑ [LPR20] - Lewis-Pye, Roughgarden: Resource Pools and the CAP Theorem

❑ [Abr21] - Abraham: https://twitter.com/ittaia/status/1452027925084229637

❑ [LPR21a] - Lewis-Pye, Roughgarden: How Does Blockchain Security Dictate Blockchain

Implementation?

❑ [LPR21b] - Lewis-Pye, Roughgarden: Byzantine Generals in the Permissionless Setting

Thanks!
ivan.visconti@gmail.com

